
Ant
Technology

Datacenter
User Guide

Document Version: 20230209

Ant
Technology

Datacenter
User Guide

Document Version: 20230209

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement

and other trademarks related to Ant Group are owned by Ant
Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Datacenter User Guide·Legal disclaimer

> Document Version: 20230209 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Datacenter User Guide·Document convent i
ons

> Document Version: 20230209 I

Table of Contents
1.Datacenter

1.1. About Datacenter

1.2. Integrate Android SDK

1.2.1. Quick start

1.2.2. Advanced guide

1.3. Integrate iOS SDK

1.4. Storage type

1.4.1. Storage types

1.4.2. Android storage types

1.4.2.1. Database storage

1.4.2.2. Key-value pair storage

1.4.2.3. File storage

1.4.3. iOS storage types

1.4.3.1. APDataCenter

1.4.3.2. KV storage

1.4.3.3. DAO storage

1.4.3.4. LRU storage

1.4.3.5. Custom storage

1.4.3.6. Data cleanup

1.5. FAQ

05

05

05

05

07

07

08

08

09

09

14

15

18

18

22

25

40

43

44

47

Datacenter User Guide·T able of Contents

> Document Version: 20230209 I

Datacenter provided by mPaaS is a complete solution for persisting storage on mPaaS client.
Datacenter SDK provides diversified storage methods to meet different storage requirements.

Features
The features of mPaaS Datacenter vary by platforms.

Android platform:

Support SDK database encryption.

Reconstructed based on OrmLite (Object Relational Mapping Lite) framework, provide Data
Access Objects (DAO) support, simple and easy to use.

Support SharePreferences-based key-value pair storage.

Support encrypting files before storing them.

iOS platform:

Reduce the use of NSUserDefaults , and store the large-size data and private data in other
places than NSUserDefaults , with relatively higher access efficiency compared with using
NSUserDefaults.

Reduce the cases that the business system automatically maintains files, and reduce the
messy files in Documents and Library directories.

Datacenter is divided into storage space irrelevant to users and storage space of the
current users by storage space. The business layer doesn’t have to be concerned with user
switch, and doesn’t have to use userId to obtain the current user data.

Based on sqlite, Datacenter provides DAO (Data Access Objects) support and is more flexible
than CoreData. It encapsulates the database operations by using the configuration file and
isolates them from business. The business layer users interfaces to access data and operate
database tables.

The underlayer supports data encryption.

Provide diversified storage methods to meet different storage requirements, and providing
memory cache.

You can integrate Datacenter to your project through Native AAR, mPaaS Inside, or Portal &
Bundle mode. Multiple storage methods such as database storage, key-value pair storage, and
file storage can be implemented to meet different business requirements.

Prerequisites

1.Datacenter
1.1. About Datacenter

1.2. Integrate Android SDK
1.2.1. Quick start

Datacenter User Guide·Datacenter

> Document Version: 20230209 5

If you want to integrate the component to the mPaaS based on the native AAR mode, you
need to first complete the prerequisites and the subsequent steps. For more information, see
Add mPaaS to your project.

If you want to integrate the component to the mPaaS based on the mPaaS Inside mode, you
need to first complete the mPaaS Inside integration procedure.

If you want to integrate the component to the mPaaS based on components, you need to first
complete the Component-based integration procedure.

Add the SDK

Native AAR mode
You can use the component management (AAR) function to install the Storage component in
your project. For more information, see AAR component management.

mPaaS Inside mode
In your project, install the Storage component on the Component Management page.

For more information, see Manage component dependencies.

Component-based mode
In your Portal and Bundle projects, install the Storage component on the Component
Management page.

For more information, see Manage component dependencies.

mPaaS initialization
In the native AAR or mPaaS Inside mode, you must initialize the mPaaS.

Add the following code to the Application class:

public class MyApplication extends Application {
 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);
 // Initialize callback settings for mPaaS.
 QuinoxlessFramework.setup(this, new IInitCallback() {
 @Override
 public void onPostInit() {
 // This callback indicates that mPaaS has been initialized, and mPaaS-related calls can be ma
de in this callback.
 }
 });
 }
 @Override
 public void onCreate() {
 super.onCreate();
 // Initialize mPaaS.
 QuinoxlessFramework.init();
 }
}

Using storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 6

If you need to use the database to store related content, see Database storage.

If you need to use the key-value pair to store related content, see Key-value pair storage.

If you need to use the file to store related content, see File storage.

Sample code
See Sample code to obtain sample code.

Database storage
For information about how to use database storage, see Database storage.

Key-value pair storage
For information about how to use key-value pair storage, see Key-value pair storage.

File storage
For information about how to use file storage, see File storage.

Currently, Datacenter supports integrating based on native framework and using Cocoapods. For
different service requirements, various storage solutions are available, including APDataCenter,
Key-value storage, DAO storage, LRU storage, custom storage and data cleaning.

This guide introduces how to add the Datacenter SDK to a project in Xcode.

Prerequisite
You have integrated mPaaS to your project. For more information, refer to Integrate based on
native framework and using Cocoapods.

Procedure
Use the cocoapods-mPaaS plugin to add the Datacenter SDK to a project.

1. In the Podfile file, use mPaaS_pod "mPaaS_DataCenter" to add the dependency.

2. Execute pod install to complete integrating the SDK.

1.2.2. Advanced guide

1.3. Integrate iOS SDK

Datacenter User Guide·Datacenter

> Document Version: 20230209 7

https://github.com/mpaas-demo/android-storage

Execute pod install to complete integrating the SDK.

What to do next
Use the SDK by referring to Datacenter Demo in baseline 10.1.60 and later.

Datacenter component for Android client provides the following persistent storage solutions:

Android storage types
Datacenter component for Android client provides the following persistent storage solutions:

Database storage: Provide the capability of encrypting database underlayer based on OrmLite
architecture.

Key-value pair storage: Do some wrapping based on Android native SharedPreferences to
improve the usability.

File storage: Based on Android native File , provide file encryption capability.

iOS storage types
Datacenter component for iOS client provides the following persistent storage solutions:

APDataCenter: The entrance class for Datacenter

KV storage: Provide interface storage, and simplify the complexity of client-side persistent
objects.

DAO storage: When sqlite access is necessary for business, you can use the DAO function of
Datacenter to simplify and encapsulate.

LRU storage: Provide the storage methods of memory cache and disk cache.

Custom storage: Provide APCustomStorage storage, APAsyncFileArrayService storage, APObj
ectArrayService storage, and other custom storage methods.

Data cleaning: Create a cache directory that can automatically maintain the capacity, and
provide the implementation class for cleaning cache.

Instructions on relevant public classes are as follows:

Class name Function

APDataCenter Singleton class, entrance class
for Datacenter

APSharedPreferences

This class corresponds to a
database file, provides a Key-
Value storage interface, and
contains DAO tables.

APDataCrypt Symmetric encryption structure

APLRUDiskCache The disk cache that supports
LRU elimination rule

1.4. Storage type
1.4.1. Storage types

Datacenter User Guide·Datacenter

> Document Version: 20230209 8

https://github.com/mpaas-demo/ios-datacenter

APLRUMemoryCache
The memory cache that
supports LRU elimination rule,
which is thread-safe

APObjectArrayService

Based on DAO, this class can
persist the objects that
support NSCoding by business,
and supports encryption,
capacity limitation and memory
cache.

APAsyncFileArrayService

Based on DAO, this class can
persist binary data, and
supports encryption, capacity
limitation and memory cache.

APCustomStorage

Customize storage space, and
provide complete user
management, Key-Value and
DAO storage in this space.

APDAOProtocol Describe the interfaces that
are supported by DAO objects.

Class name Function

Database storage provided by mPaaS provides the capability of encrypting database underlayer
based on OrmLite architecture. You can call the following interface to implement data addition,
deletion, modification and query in databases.

10.2.3 and later baselines: com.alibaba.j256.ormlite.dao.Dao

10.1.68 and earlier baseline: com.j256.ormlite.dao.Dao

Note

When using the database, please do not directly encrypt the original database, otherwise it
will cause the native layer decryption crash. It is recommended that you create a new
encrypted database first, and then copy the contents of the original database to the newly
created encrypted database.

Examples
Generate tables

Create OrmLiteSqliteOpenHelper

Query data

1.4.2. Android storage types

1.4.2.1. Database storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 9

Insert data

Delete data

Generate tables

// Database table name, it is the class name by default
@DatabaseTable
public class User {
 // Primary key
 @DatabaseField(generatedId = true)
 public int id;
 // The value of name field must be unique
 @DatabaseField(unique = true)
 public String name;
 @DatabaseField
 public int color;
 @DatabaseField
 public long timestamp;
}

Create OrmLiteSqliteOpenHelper
Customize a DemoOrmLiteSqliteOpenHelper which inherits from OrmLiteSqliteOpenHelper .

With OrmLiteSqliteOpenHelper , a database can be created and encrypted.

10.2.3 and later baselines:

public class DemoOrmLiteSqliteOpenHelper extends OrmLiteSqliteOpenHelper {

 /**
 * Database name
 */
 private static final String DB_NAME = "com_mpaas_demo_storage.db";

 /**
 * Current database version
 */
 private static final int DB_VERSION = 1;

 /**
 * Database encryption key. mPaaS supports encrypting databases to make the data safer on device
s. If it is null, the databases will not be encrypted.
 * Note: The password can only be set once, and there is no API for changing the password; encrypti
on of the unencrypted library setting password is not supported (it will cause a crash).
 */
 private static final String DB_PASSWORD = "mpaas";

 public DemoOrmLiteSqliteOpenHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 setPassword(DB_PASSWORD);
 }

 /**
 * Callback function upon database creation

Datacenter User Guide·Datacenter

> Document Version: 20230209 10

 * Callback function upon database creation
 *
 * @param sqLiteDatabase: Database
 * @param connectionSource: Connection
 */
 @Override
 public void onCreate(SQLiteDatabase sqLiteDatabase, ConnectionSource connectionSource) {
 try {
 // Create User table
 TableUtils.createTableIfNotExists(connectionSource, User.class);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 /**
 * Callback function upon database update
 *
 * @param database: Database
 * @param connectionSource: Connection
 * @param oldVersion: Old database version
 * @param newVersion: New database version
 */
 @Override
 public void onUpgrade(SQLiteDatabase database, ConnectionSource connectionSource, int oldVersi
on, int newVersion) {
 try {
 // Delete the old version of the User table, and ignore errors
 TableUtils.dropTable(connectionSource, User.class, true);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 try {
 // Rereate User table
 TableUtils.createTableIfNotExists(connectionSource, User.class);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

10.1.68 and earlier baseline:

Database encryption key. mPaaS supports encrypting databases to make the data safer on devices. If
it is null, the databases will not be encrypted. Database encryption key. mPaaS supports encrypting d
atabases to make the data safer on devices. If it is null, the databases will not be encrypted.public cla
ss DemoOrmLiteSqliteOpenHelper extends OrmLiteSqliteOpenHelper {

 /**
 * Database name
 */
 private static final String DB_NAME = "com_mpaas_demo_storage.db";

 /**

Datacenter User Guide·Datacenter

> Document Version: 20230209 11

 /**
 * Current database version
 */
 private static final int DB_VERSION = 1;

 /**
 * Database encryption key. mPaaS supports encrypting databases to make the data safer on device
s. If it is null, the databases will not be encrypted.
 * Note: The password can only be set once, and there is no API for changing the password; encrypti
on of the unencrypted library setting password is not supported (it will cause a crash).
 */
 private static final String DB_PASSWORD = "mpaas";

 public DemoOrmLiteSqliteOpenHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 setPassword(DB_PASSWORD);
 }

 /**
 * Callback function upon database creation
 *
 * @param sqLiteDatabase Database
 * @param connectionSource Connection
 */
 @Override
 public void onCreate(SQLiteDatabase sqLiteDatabase, ConnectionSource connectionSource) {
 try {
 // Create User table
 TableUtils.createTableIfNotExists(connectionSource, User.class);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 /**
 * Callback function upon database update
 *
 * @param database Database
 * @param connectionSource Connection
 * @param oldVersion Old database version
 * @param newVersion New database version
 */
 @Override
 public void onUpgrade(SQLiteDatabase database, ConnectionSource connectionSource, int oldVersi
on, int newVersion) {
 try {
 // Delete the old version of the User table, and ignore errors
 TableUtils.dropTable(connectionSource, User.class, true);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 try {
 // Rereate User table
 TableUtils.createTableIfNotExists(connectionSource, User.class);
 } catch (SQLException e) {
 e.printStackTrace();

Datacenter User Guide·Datacenter

> Document Version: 20230209 12

 e.printStackTrace();
 }
 }
}

Query data
Assume that you are to query all data in the User table, and sort the data by timestamp field
in an ascending order.

 /**
 * Initialize database data
 */
 private void initData() {
 mData.clear();
 try {
 mData.addAll(mDbHelper.getDao(User.class).queryBuilder().orderBy("timestamp", true).query()
);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

Insert data

 /**
 * Insert user information
 *
 * @param user: User information
 */
 private void insertUser(User user) {
 if (null == user) {
 return;
 }
 try {
 // Insert data, mDbHelper is the DemoOrmLiteSqliteOpenHelper that you customized
 mDbHelper.getDao(User.class).create(user);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

Delete data

Datacenter User Guide·Datacenter

> Document Version: 20230209 13

 /**
 * Delete user information
 *
 * @param user: User information
 */
 private void deleteUser(User user) {
 try {
 // Delete data, mDbHelper is the DemoOrmLiteSqliteOpenHelper that you customized
 mDbHelper.getDao(User.class).delete(user);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

Related links
OrmLite introduction

The key-value pair storage provided by mPaaS is similar with native Android
 SharedPreferences , providing a similar interface. The underlying is the key-value-pair storage

system implemented by mPaaS.

Examples
Create APSharedPreferences

Query data

Insert data

Delete data

Create APSharedPreferences

// The context is Android context; GROUP_ID can be regarded as the file name of SharedPreferences
APSharedPreferences mAPSharedPreferences = SharedPreferencesManager.getInstance(context, GR
OUP_ID);

Query data

 /**
 * Initialize the data of key-value pairs
 */
 private void initData() {
 mData.clear();
 try {
 // Get the information of all key-value pairs
 mData.putAll((Map<String, String>) mAPSharedPreferences.getAll());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

1.4.2.2. Key-value pair storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 14

http://ormlite.com/

Insert data

 /**
 * Insert key-value pairs
 *
 * @param key key
 * @param value value
 */
 private void insertKeyValue(String key, String value) {
 mAPSharedPreferences.putString(key, value);
 mAPSharedPreferences.commit();
 }

Delete data

 /**
 * Delete key-value pairs
 *
 * @param key key
 */
 private void deleteKeyValue(String key) {
 mAPSharedPreferences.remove(key);
 mAPSharedPreferences.commit();
 }

The file storage provided by mPaaS provides file encryption capability based on Android native
 File .

Important: Because the file encryption uses the encryption function provided by Mobile Security
Guard, you must ensure that the encryption images in Mobile Security Guard have been correctly
generated.

File types
ZFile: This type of files are stored in data/data/package_name/files .

ZExternalFile: This type of files are stored in sdcard/Android/data/package_name/files .

ZFileInputStream/ZFileOutputStream: File storage input/output stream, the files will not be
encrypted if you use this stream.

ZSecurityFileInputStream/ZSecurityFileOutputStream: File storage input/output stream, the
files will be encrypted if you use this stream.

Examples
Convert files to text

Convert text to files

Insert files

Delete files

1.4.2.3. File storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 15

Convert files to text

 /**
 * Convert files to text
 * @param file: File
 * @return Text
 */
 public String file2String(File file) {
 InputStreamReader reader = null;
 StringWriter writer = new StringWriter();
 try {
 // Use decryption input stream ZSecurityFileInputStream
 // If you don’t use encryption/decryption function, then use ZFileInputStream
 reader = new InputStreamReader(new ZSecurityFileInputStream(file, this));
 //Write the input stream into the output stream
 char[] buffer = new char[DEFAULT_BUFFER_SIZE];
 int n = 0;
 while (-1 != (n = reader.read(buffer))) {
 writer.write(buffer, 0, n);
 }
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 } finally {
 if (reader != null)
 try {
 reader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 //Return the coversion result
 if (writer != null) {
 return writer.toString();
 } else {
 return null;
 }
 }

Convert text to files

Datacenter User Guide·Datacenter

> Document Version: 20230209 16

 /**
 * Convert text to files
 * @param res: Text
 * @param file: File
 * @return true means successful while false means failed
 */
 public boolean string2File(String res, File file) {
 boolean flag = true;
 BufferedReader bufferedReader = null;
 BufferedWriter bufferedWriter;
 try {
 bufferedReader = new BufferedReader(new StringReader(res));
 // Use decryption output stream ZSecurityFileOutputStream
 // If you don’t use encryption/decryption function, then use ZFileOutputStream
 bufferedWriter = new BufferedWriter(new OutputStreamWriter(new ZSecurityFileOutputStream
(file, this)));
 //Character buffers
 char buf[] = new char[DEFAULT_BUFFER_SIZE];
 int len;
 while ((len = bufferedReader.read(buf)) != -1) {
 bufferedWriter.write(buf, 0, len);
 }
 bufferedWriter.flush();
 bufferedReader.close();
 bufferedWriter.close();
 } catch (Exception e) {
 e.printStackTrace();
 flag = false;
 return flag;
 } finally {
 if (bufferedReader != null) {
 try {
 bufferedReader.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 return flag;
 }

Insert files

Datacenter User Guide·Datacenter

> Document Version: 20230209 17

 /**
 * Insert files
 *
 * @param file: File
 */
 private void insertFile(BaseFile file) {
 if (null == file) {
 return;
 }
 StringBuilder sb = new StringBuilder();
 String content = sb.append(file.getName())
 .append(' ')
 .append(SIMPLE_DATE_FORMAT.format(new Date(System.currentTimeMillis()))).toString();
 string2File(content, file);
 try {
 if (!file.exists()) {
 file.createNewFile();
 }
 mData.add(file);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Delete files

 /**
 * Delete files
 *
 * @param file: File
 */
 private void deleteFile(BaseFile file) {
 try {
 file.delete();
 mData.remove(file);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

APDataCenter is a unified storage entry class. It is singleton and can be called anywhere in the
code.

[APDataCenter defaultDataCenter]

1.4.3. iOS storage types

1.4.3.1. APDataCenter

Datacenter User Guide·Datacenter

> Document Version: 20230209 18

You can also use macros.

#define APDefaultDataCenter [APDataCenter defaultDataCenter]

This initializes APDataCenter .

API description

Macro definitions

#define APDefaultDataCenter [APDataCenter defaultDataCenter]
#define APCommonPreferences [APDefaultDataCenter commonPreferences]
#define APUserPreferences [APDefaultDataCenter userPreferences]
#define APCurrentVersionStorage [APDefaultDataCenter currentVersionStorage]

Constants
These event notifications usually require no attention from the business-level codes, but
Datacenter will throw these notifications.

/**
 * Event notification on that the database file of the previous user is about to be closed.
 */
extern NSString* const kAPDataCenterWillLastUserResign;

/**
 * Notification on that the user status has been switched. It is possible that the user has changed to n
il. The specific userId can be acquired with the currentUserId function.
 * The auxiliary object to this notification is a dictionary. If it is not nil, the @"switched" key value in it r
eturns `@YES and it indicates that user switch event did happen.
 */
extern NSString* const kAPDataCenterDidUserUpdated;

/**
 * The user didn't switch, and `APDataCenter` receives the sign-in event again. This notification will b
e thrown.
 */
extern NSString* const kAPDataCenterDidUserRenew;

APIs and properties

void APDataCenterLogSwitch(BOOL on);
Enable or disable the console log of Datacenter. It is enabled by default.

@property (atomic, strong, readonly) NSString* currentUserId;
The userId of the user currently logged in.

(NSString*)preferencesRootPath;
Get the path where the commonPreferences and userPreferences database folders are stored.

Datacenter User Guide·Datacenter

> Document Version: 20230209 19

(void)setCurrentUserId:(NSString*)currentUserId;
Set the user ID of the user currently logged in. Do not call it in the business-level codes as it will
be called by the login module. Once the user ID is set, userPreferences will point to the
database of this user.

(void)reset;
Fully reset the Data Center directories. Please use it with caution.

(APSharedPreferences*)commonPreferences;
The user independent global storage database.

(APSharedPreferences*)userPreferences;
The storage database that the user currently logged in. When the user is not logged in, nil will
be returned.

(APSharedPreferences)preferencesForUser:(NSString)userId;
Return the storage object of the specified user ID. The business layer usually uses
 userPreferences method for this purpose. When there is a need for asynchronous storage, this

method can be used to acquire the storage database of a specified user to avoid data mess-up.

(APPreferencesAccessor)accessorForBusiness:(NSString)business;
Generate an data accessor based on the business name. The business layer needs to hold the
object by itself. Once this data accessor is used, the business value will be no longer required for
accessing the KV storage.

APPreferencesAccessor* accessor = [[APDataCenter defaultDataCenter] accessorForBusiness:@"aBiz"
];
[[accessor commonPreferences] doubleForKey:@"aKey"];

// Equal to

[[[APDataCenter defaultDataCenter] commonPreferences] doubleForKey:@"aKey" business:@"aBiz"];

(APCustomStorage*)currentVersionStorage;
Datacenter will maintain a database of the current version. When the version is upgraded, the
database will be reset.

(id<APDAOProtocol>)daoWithPath:(NSString*)filePath userDependent:
(BOOL)userDependent;
Generate a DAO access object from a configuration file.

Parameter description

Parameter Description

Datacenter User Guide·Datacenter

> Document Version: 20230209 20

filePath

The path of the DAO configuration file. For files
in the main bundle, use the method below:

 NSString* filePath = [[NSBundle mainBundle]
pathForResource:@"file" ofType:@"xml"];

userDependent

Specifies the database operated by the DAO
object.

If userDependent=NO , it indicates that it is
not user-specific, and DAO object will create
tables in the database files of
 commonPreferences .

If userDependent=YES , DAO object will create
tables in the database files of
 userPreferences .

After the user is switched, the subsequent DAO
operations will automatically switch to the files
of the new user, and the business layer does not
need to care about the user switch.

Parameter Description

Return value
The DAO object. The business layer does not need to care about its class name but only needs
to enforce the switch by using the custom id<AProtocol> . The DAO object returned can be
switched with id<APDAOProtocol> as necessary. The method provided by default will be called.
So the custom AProtocol should not contain methods defined in APDAOProtocol .

(id<APDAOProtocol>)daoWithPath:(NSString)filePath databasePath:
(NSString)databasePath;
Create a DAO access object maintaining its own independent database files without using
 APSharedPreferences . The DAO object created using daoWithPath:userDependent: interface

operates on commonPreferences or userPreferences . This interface will create a DAO object
operating on the database file specified in the databasePath . If the file does not exist, it will be
created. Multiple DAO objects can be created pointing to the same databasePath .

Parameter description

Parameter Description

filePath The same as daoWithPath:userDependent:
interface.

databasePath

The location of the DAO database file. The path
can be an absolute path or a relative path, such
as Documents/XXXX.db or
 Library/Movie/XXX.db .

Datacenter User Guide·Datacenter

> Document Version: 20230209 21

Return value
DAO object.

Introduction
In many scenarios, Key-Value storage can meet the client-side storage requirements quite well.
 NSUserDefaults is often used, but it does not support encryption and is slow in data

persistence.

The Key-Value storage of Datacenter provides interfaces for storing: PList objects of such data
types as NSInteger, long long (the same as NSInteger in 64-bit environment), BOOL, double and
NSString, objects supporting NSCoding, and Objective-C objects that can be converted to JSON
objects through reflection, greatly reducing the complexity of persistent objects in the client.

For instructions on most of the interfaces of Key-Value storage, see the method description in
the header file APSharedPreferences.h .

Store basic types of objects
Datacenter provides the following interfaces for storing the basic types of objects:

- (NSInteger)integerForKey:(NSString*)key business:(NSString*)business;
- (NSInteger)integerForKey:(NSString*)key business:(NSString*)business defaultValue:(NSInteger)def
aultValue; // Return default value when the data don’t exist
- (void)setInteger:(NSInteger)value forKey:(NSString*)key business:(NSString*)business;

- (long long)longLongForKey:(NSString*)key business:(NSString*)business;
- (long long)longLongForKey:(NSString*)key business:(NSString*)business defaultValue:(long long)de
faultValue; // Return default value when the data don’t exist
- (void)setLongLong:(long long)value forKey:(NSString*)key business:(NSString*)business;

- (BOOL)boolForKey:(NSString*)key business:(NSString*)business;
- (BOOL)boolForKey:(NSString*)key business:(NSString*)business defaultValue:(BOOL)defaultValue; /
/ Return default value when the data don’t exist
- (void)setBool:(BOOL)value forKey:(NSString*)key business:(NSString*)business;

- (double)doubleForKey:(NSString*)key business:(NSString*)business;
- (double)doubleForKey:(NSString*)key business:(NSString*)business defaultValue:(double)defaultVa
lue; // Return default value when the data don’t exist
- (void)setDouble:(double)value forKey:(NSString*)key business:(NSString*)business;

The parameter defaultValue is the default value returned when the data don’t exist.

Store Objective-C objects

Interface instruction
Datacenter provides the following interfaces for storing the Objective-C objects:

1.4.3.2. KV storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 22

- (NSString*)stringForKey:(NSString*)key business:(NSString*)business;
- (NSString*)stringForKey:(NSString*)key business:(NSString*)business extension:(APDataCrypt*)exte
nsion;
- (void)setString:(NSString*)string forKey:(NSString*)key business:(NSString*)business;
- (void)setString:(NSString*)string forKey:(NSString*)key business:(NSString*)business extension:(AP
DataCrypt*)extension;

- (id)objectForKey:(NSString*)key business:(NSString*)business;
- (id)objectForKey:(NSString*)key business:(NSString*)business extension:(APDataCrypt*)extension;

- (void)setObject:(id)object forKey:(NSString*)key business:(NSString*)business;
- (void)setObject:(id)object forKey:(NSString*)key business:(NSString*)business extension:(APDataCr
ypt*)extension;
- (BOOL)setObject:(id)object forKey:(NSString*)key business:(NSString*)business extension:(APData
Crypt*)extension options:(APDataOptions)options;

- (void)archiveObject:(id)object forKey:(NSString*)key business:(NSString*)business;
- (void)archiveObject:(id)object forKey:(NSString*)key business:(NSString*)business extension:(APDa
taCrypt*)extension;
- (BOOL)archiveObject:(id)object forKey:(NSString*)key business:(NSString*)business extension:(APD
ataCrypt*)extension options:(APDataOptions)options;

- (void)saveJsonObject:(id)object forKey:(NSString*)key business:(NSString*)business;
- (void)saveJsonObject:(id)object forKey:(NSString*)key business:(NSString*)business extension:(APD
ataCrypt*)extension;
- (BOOL)saveJsonObject:(id)object forKey:(NSString*)key business:(NSString*)business extension:(AP
DataCrypt*)extension options:(APDataOptions)options;

setString & stringForKey

The setString and stringForKey interfaces are recommended for storing NSString objects as
the names are more interpretative.

If the data are not encrypted, strings stored with those two interfaces can be viewed in Sqlite
DB viewer in a more intuitive way. Strings stored with setObject method will be first converted
to NSData through Property List and then saved to the database.

setObject

The setObject method is recommended for storing Property List objects to achieve the highest
efficiency.

Property List objects: Property List objects: NSNumber, NSString, NSData, NSDate, NSArray, and
NSDictionary. The sub objects in NSArray and NSDictionary must also be PList objects.

When the Property List objects are saved by using setObject , the objects acquired with
 objectForKey method is mutable. The savedArray acquired in the following codes is
 NSMutableArray .

NSArray* array = [[NSArray alloc] initWithObjects:@"str", nil];
[APCommonPreferences setObject:array forKey:@"array" business:@"biz"];

NSArray* savedArray = [APCommonPreferences objectForKey:@"array" business:@"biz"];

Datacenter User Guide·Datacenter

> Document Version: 20230209 23

archiveObject

For the Objective-C objects supporting the NSCoding protocol, Datacenter calls the system’s
 NSKeyedArchiver convert the objects into NSData objects and persist them.

Property List objects can use this interface, too, but with a low efficiency and thus not
recommended.

saveJsonObject

When an Objective-C object is neither a Property List object nor an NSCoding-supporting one,
you can use this method to persist it.

Through runtime dynamic reflection, this method maps Objective-C objects to JSON strings. But
not all the Objective-C objects can be saved with this method, such as Objective-C objects that
have an property serving as C struct pointer, reference each other, or contain dictionaries or
arrays in properties.

objectForKey

When Datacenter saves the data of Objective-C objects, it will record the archiving method as
well. The objectForKey method is used for acquiring objects.

Note

Note: Strings saved using the setString method should be acquired with the stringForKey
method.

Encrypt data
Use default encrypt method

Interfaces with extension argument support encryption, and pass in APDataCrypt struct.

 APDefaultEncrypt is the default encryption method using AES symmetric encryption.

 APDefaultDecrypt is the default decryption method and share the key with APDefaultEncrypt .

In usual cases, you need only the default encryption method provided by Datacenter, shown as
follows:

[APUserPreferences setObject:aObject forKey:@"key" business:@"biz" extension:APDefaultEncrypt()]
;

id obj = [APUserPreferences objectForKey:@"key" business:@"biz" extension:APDefaultDecrypt()];
// or
id obj = [APUserPreferences objectForKey:@"key" business:@"biz"];

As the default encryption is applied, the data-acquiring interfaces can skip the extension
argument.

Use self-defined encryption method

If you have higher security requirements on encryption, you can implement the APDataCrypt
struct with specified function pointers for encryption and decryption. Ensure that the encryption
and decryption methods are matched to save and recover data correctly.

Datacenter User Guide·Datacenter

> Document Version: 20230209 24

Encrypt objects of basic types

To encrypt and store BOOL, NSInteger, double, and long long objects, you can convert them into
strings or put them into the NSNumber, and then call the setString or setObject interface.

Specify options

typedef NS_OPTIONS (unsigned int, APDataOptions)
{
 //These two options are used to identify data encryption attribute. Do not use them in the interface
s. Please use extension to pass the encryption method.
 APDataOptionDefaultEncrypted = 1 << 0, //Do not pass this option. It doesn’t work even if it is
passed. The Datacenter determines encryption method according to extension in interface rather than
options.
 APDataOptionCustomEncrypted = 1 << 1, //Do not pass this option. It doesn’t work even if it is
passed. The Datacenter determines encryption method according to extension in interface rather than
options.

 //Indicate that the data can be cleared upon cache cleaning. Here, 1 is casted to unsinged int, becau
se some compilation options may not compute 1 << 31 as unsigned int and cause assignment failure.
 APDataOptionPurgeable = (unsigned int)1 << 31,
};

You can specify options in methods setObject , archiveObject and saveJsonObject .

 APDataOptionPurgeable indicates that the data can be automatically cleared upon data
cleaning, see Data cleaning.

General KV storage can only store simple data or encapsulated OC objects, and does not
support data search. When the business requires the access to SQLite, the DAO function of
Datacenter can be utilized for simplification and encapsulation. It works as follows:

1.4.3.3. DAO storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 25

1. Define an xml configuration file to describe the functions, returned data types and
encrypted fields of various SQLite operations.

2. Define an interface for DAO objects, DAOInterface (@protocol) . The interface method names
and arguments should stay consistent with those described in the configuration file.

3. The business layer passes the xml configuration file to the daoWithPath method of
APDataCenter, and the DAO access object is generated. The object is directly converted into
 id<DAOInterface> .

4. Next, the business layer will be able to directly call the DAO object methods, and Datacenter
will translate the method into the database operations described in the configuration file.

Examples
The first line of the configuration file defines the default table name and database version, as
well as the initialization method.

 insertItem and getItem are two methods for inserting and reading data. They receive
arguments and format the arguments into SQL expressions.

 createTable will be called once on the underlying layer by default.

Datacenter User Guide·Datacenter

> Document Version: 20230209 26

 <module name="Demo" initializer="createTable" tableName="demoTable" version="1.0">
 <update id="createTable">
 create table if not exists ${T} (index integer primary key, content text)
 </update>

 <insert id="insertItem" arguments="content">
 insert into ${T} (content) values(#{content})
 </insert>

 <select id="getItem" arguments="index" result="string">
 select * from ${T} where index = #{index}
 </select>
 </module>

Define the DAO API:

 @protocol DemoProtocol <APDAOProtocol>
 - (APDAOResult*)insertItem:(NSString*)content;
 - (NSString*)getItem:(NSNumber*)index;
 @end

Create a DAO proxy object. Suppose the configuration file is named demo_config.xml and is
located in Main Bundle.

Write a piece of data with the insertItem method, acquire its index, and then read the
written data with the index.

 NSString* filePath = [[NSBundle mainBundle] pathForResource:@"demo_config" ofType:@"xml"];
 id<DemoProtocol> proxy = [[APDataCenter defaultDataCenter] daoWithPath:filePath userDepende
nt:YES];
 [proxy insertItem:@"something"];
 long long lastIndex = [proxy lastInsertRowId];
 NSString* content = [proxy getItem:[NSNumber numberWithInteger:lastIndex]];
 NSLog(@"content %@", content);

 lastInsertRowId is a method of APDAOProtocol , used for getting the rowId of the row last
inserted. To enable the DAO object to support this method, you only need to make the
 DemoProtocol inherit from the APDAOProtocol in declaration.

Keyword

module

<module name="demo" initializer="createTable" tableName="tableDemo" version="1.5" resetOnUpgra
de="true" upgradeMinVersion="1.2">

 initializer : Optional. DAO considers the update method specified by initializer as a method
for building a database table, which will be executed once by default when the first DAO
request is initiated.

 tableName : Specifies the table name for the default operation in the method below. It can

Datacenter User Guide·Datacenter

> Document Version: 20230209 27

 tableName : Specifies the table name for the default operation in the method below. It can
be replaced by ${T} or ${t} n SQL statements, so that you don’t have to input the table name
every time. It is recommended that one configuration file be targeted to one table.
 tableName can be empty, so that the same configuration file can operate on multiple tables

sharing the same format. For example, to process chat messages in tables, the setTableName
method of DAO objects can be called for setting the name of the table to be operated on.

 version : Represents the version number of the configuration file, in x.x format. After the
table is created, tableName will serve as the key and the table version will be saved to the
 TableVersions table in the database file. TableVersions will work in concert with the
 upgrade block for table updates.

 resetOnUpgrade : If its value is true or YES, when version is updated, the old table will be
deleted instead of calling the upgrade block. If this argument does not exist, its value is
false by default.

 upgradeMinVersion : If it is not empty, database files of a earlier earlier than its value will be
reset directly. Otherwise the upgrade operation will be performed.

const

<const table_columns="(id, time, content, uin, read)"/>

Define a constant of the string type. table_columns is the name of a constant, and the content
after the equal sign (=) is the constant value. The constant can be referenced in the
configuration file as ${constant name} .

select

<select id="find" arguments="id, time" result=":messageModelMap">
 select * from ${T} where id = #{id} and time > @{time}
</select>

 @arguments :

List of the argument names, separated by “,”. Incoming arguments from the caller are
named in turn according to the descriptions in arguments . Selectors of DAO objects will not
carry the argument name in calling, so arguments must be named in sequence here.

If an argument has a dollar sign ($) at its beginning, this argument does not accept the nil
value. Calls of DAO interfaces from the business layer allow nil arguments. But if an argument
has a dollar sign ($) at its beginning and the caller accidentally passes a nil value, the DAO
call will fail automatically to prevent unexpected issues from happening.

For more information about how to reference parameters, see Reference methods.

For example, in the code above, the corresponding selector is as follows:

- (MessageModel*)find:(NSNumber*)id time:(NSNumber*)time;

If the DAO object calls [daoProxy find:@1234 time:@2014] , the ready SQL statement will be:

select * from tableDemo where id = ? and time > 2014

Datacenter User Guide·Datacenter

> Document Version: 20230209 28

The NSNumber value @1234 will be handed over to SQLite for binding.

 @result :

 result can be the returned value of the DAO method. The use of square brackets []
indicates to return the array type of values and iterations occur for the returned values of the
SELECT method until no result is returned from SQLite. If the square brackets [] are removed,
it indicates to return one result only and one iteration is conducted for the SELECT method. It
is similar to the next method for FMResultSet in FMDB database.

Returned types:

 int : only returns one result of the [NSNumber numberWithInt] type. Note the possibility of
overflow.

 long long : only returns one result of the [NSNumber numberWithLongLong] type.

 bool : only returns one result of the [NSNumber numberWithBool] type.

 double : only returns one result of the [NSNumber numberWithDouble] type.

 string : only returns one result of the NSString* type.

 binary : only returns one result of the NSData* type.

 [int] : an array, with values of the [NSNumber numberWithInt] type in the array.

 [long long] : an array, with values of the [NSNumber numberWithLongLong] type in the array.

 [bool] : an array, with values of the [NSNumber numberWithBool] type in the array.

 [double] : an array, with values of the [NSNumber numberWithDouble] type in the array.

 [string] : an array, with values of the NSString* type in the array.

 [binary] : an array, with values of the NSData* type in the array.

 [{}] : an array, with mapping of column name->column value in the array.

 [AType] : an array, with filled custom classes in the array.

 {} : only one result, mapping of column name->column value.

 AType : only one result, with the filled custom class.

 [:AMap] : an array, with XML-defined mapped objects of AMap in the array.

 :AMap : only one result. The AMap defined in the configuration file is used to describe the
object.

In the example above, the returned type is :messageModelMap . The Objective-C types
returned and columns that require special mapping will be defined in messageModelMap . Refer
to the keyword map.

 @foreach :

The SELECT method also supports the foreach field and its usage is similar to that of the
 insert , update , and delete methods to be introduced later. The difference is, if the select

method specifies the foreach argument, the SELECT operation will be executed for N times,
and the results will be returned in an array. So if the select method in DAO specifies the
 foreach argument, its return value must be defined as NSArray* in the protocol.

Datacenter User Guide·Datacenter

> Document Version: 20230209 29

insert, update, delete

<insert id="addMessages" arguments="messages" foreach="messages.model">
 insert or replace into ${T} (id, content, uin, read) values(#{model.msgId}, # {model.content}, # {model.u
in}, # {model.read})
</insert>

<update id="createTable">
 <step>
 create table if not exists ${T} (id integer primary key, content text, uin integer, read boolean)
 </step>
 <step>
 create index if not exists uin_idx on ${T} (uin)
 </step>
</update>

<delete id="remove" arguments="msgId">
 delete from ${T} where msgId = #{msgId}
</delete>

The INSERT, UPDATE and DELETE methods share the same format. These methods’ argument
concatenation and reference are the same with that of the SELECT method.

The INSERT and DELETE keywords serve to differentiate purposes of methods. You can write a
“DELETE FROM TABLE” operation in the “UPDATE” function.

In DAO interfaces, when the INSERT, UPDATE or DELETE methods are executed, the returned
value is APDAOResult*, indicating whether the execution succeeded.

 @foreach :

When a ‘foreach’ field follows the INSERT, UPDATE or DELETE methods, the method will query
every element in the argument array one by one when the method is called.

The ‘foreach’ field must follow the format collectionName.item. The “collectionName” must
correspond to an argument in “arguments” and specify the loop container object. It must be
of the NSArray or NSSet type when called. The “item” represents the object fetched from the
container and will be used as the loop variable. The item name cannot be duplicated with that
of any argument in the “arguments”. The item can be used as a normal argument in the SQL
statement.

For example, the delegate method is:

- (void)addMessages:(NSArray*)messages;

The messages is a MessageModel array. For every model in the messages, an SQL call will be
executed so that elements in the array will be inserted to the database in one shot while the
upper layer does not need to care about the loop call. The underlying layer will merge the
operation into one transaction to improve efficiency.

step

Datacenter User Guide·Datacenter

> Document Version: 20230209 30

<upgrade toVersion='3.2'>
 <step resumable="true">alter table ${T} add column1 text</step>
 <step resumable="true">alter table ${T} add column2 text</step>
</upgrade>

In INSERT, UPDATE, DELETE, and UPGRADE methods, you may run into such a circumstance: To
execute a DAO method, the SQL update operation is called for multiple times to execute
multiple SQL statements. For example, after a table is created, the user wants to create some
indexes. The statement packaged in the function will be executed independently as one SQL
update operation, and the underlying layer will merge all the operations into one transaction,
such as the createTable method in the figure above.

If the step clause exists in a function, no texts are allowed outside the step. The step cannot
contain another step.

 @resumable :

When the SQL execution generated by this step statement fails, do you continue to execute
the following statement. If this argument does not exist, its value is false by default. That is,
step is executed in sequence. When a failure occurs, the whole DAO method thinks it fails.

map

<map id="messageModelMap" result="MessageModel">
 <result property="msgId" column="id"/>
</map>

It defines a mapping named messageModelMap . The actual Objective-C object generated is of
the MessageModel class.

The msgId property of the Objective-C object maps the column value of Column id in the table.
Properties not listed are regarded consistent with the column name in the table, thus omitted.

upgrade

<upgrade toVersion="1.1">
 <step>
 alter table...
 </step>
 <step>
 alter table...
 </step>
</upgrade>

With the version updated, the database may have the demand for upgrade. The SQL
statements for upgrade are written here. For example, at the very beginning, the version of
the configuration file module is 1.0. After upgrade, the configuration file version is changed to
1.1. When the new version configuration file module runs DAO methods for the first time, it will
check the current table version with the configuration file version. With an inconsistency
found, it will execute the upgrade step by step. This method is called automatically by the
underlying layer. The DAO method will be executed after the upgrade is done.

Datacenter User Guide·Datacenter

> Document Version: 20230209 31

The upgrade is executed according to the SQL UPDATE statement. If there are multiple
statements, they can be enclosed by , which is similar to the implementation of .

If the operations defined by the upgrade block are required for upgrading the table, the
“resetOnUpgrade” argument in the module must be set to “false”.

crypt

<crypt class="MessageModel" property="content"/>

It describes that the property of the specified class will be encrypted. When data is written to
the database, values fetched from this property will be encrypted. When data is read from the
database, the generated object will first decrypt the value before assigning values to the
property.

For example, in execution of this DAO method, model is of the MessageModel class. As the
content property of model is fetched, the value will be encrypted before being written into the
database.

<insert id="insertMessage" arguments="model">
 insert into ${T} (content) values(#{model.content})
</insert>

The execution of this SELECT method will return an object of the MessageModel class. When the
underlying layer fetches data from the database and writes the content property to the
MessageModel instance, it will first decrypt the data before writting the data, and then return
the ready MessageModel object.

<select id="getMessage" arguments="msgId" result="MessageModel">
 select * from ${T} where msgId = #{msgId}
</select>

The methods for setting encryption are defined in APDAOProtocol, as follows:

/**
 * Set an encryptor for encrypting the data in columns marked for encryption in the table. During data
writing to the table, data in this column will be encrypted.
 *
 * @param crypt The encryption struct which will by copied. If the incoming crypt is created externally,
it needs to be freed externally. If it is APDefaultEncrypt(), no free is required.
 */
- (void)setEncryptMethod:(APDataCrypt*)crypt;

/**
 * Set a decryptor for decrypting the data in columns marked for encryption in the table. During data r
eading from the table, data in this column will be decrypted.
 *
 * @param crypt The decryption struct which will be copied. If the incoming crypt is created externally,
it needs to be freed externally. If it is APDefaultDecrypt(), no free is required.
 */
- (void)setDecryptMethod:(APDataCrypt*)crypt;

Datacenter User Guide·Datacenter

> Document Version: 20230209 32

If no setting is made, the default encryption of APDataCenter will apply. See KV Store.If a DAO
proxy object is id<DAOProtocol> And DAOProtocol is @protocol<APDAOProtocol> , Then you can
call setEncryptMethod and setDecryptMethod directly with the DAO proxy object to set the
encryption and decryption methods.

if

<insert id="addMessages" arguments="messages, onlyRead" foreach="messages.model">
 <if true="model.read or (not onlyRead)">
 insert or replace into ${T} (msgId, content, read) values(#{model.msgId}, # {model.content}, # {model.r
ead})
 </if>
</insert>

The IF conditional statements can be nested in INSERT, UPFATE, DELETE and SELECT methods.
When IF conditions are met, the texts in the IF block will be concatenated into the final SQL
statement.

The IF can be followed by true=”expr” or false=”expr”. The “expr” stands for expression.
It can utilize the argument of the method, and “.” to list the argument object properties to
call.

Operators supported by the expression are as follows:

(): brackets

+: positive sign

-: negative sign

+: plus sign

-: minus sign

*: multiplication sign

/: division sign

\: exact division sign

%: modulus

>: greater than

<: less than

>=: greater than or equal to

<=: less than or equal to

==: equal to

! =: Not equal to

and: AND, case-insensitive

or: OR, case-insensitive

not: NOT, case-insensitive

xor: exclusive OR, case-insensitive

Datacenter User Guide·Datacenter

> Document Version: 20230209 33

The greater-than sign and less-than sign must be escaped.

The arguments inside are names of the incoming arguments from external calls, but do not
enclose the arguments with #{} or @{} like in the case of the SQL block.

The meaning of nil here is the same as the nil in Objective-C.

Strings in the expression should be started or ended with single quotes. Escape characters are
not supported, but “\’” is supported to represent a single quote.

When the arguments are an Objective-C object, ‘.’ is supported for accessing its property, such
as the model.read in the example above. If the argument is an array or dictionary, ‘argument
name.count’ can be used to get the element count.

Below is a more complex expression:

<if true="(title != nil and year > 2010) or authors.count >= 2">

The title , year and authors are all arguments passed from the caller. A nil value is allowed
for title in the call.

The expression above means “when the book title is not empty, and the year of publication is
later than 2010, or there are more than 2 authors for the book”.

choose

<choose>
 <when true="title != nil">
 AND title like #{title}
 </when>
 <when true="author != nil and author.name != nil">
 AND author_name like #{author.name}
 </when>
 <otherwise>
 AND featured = 1
 </otherwise>
</choose>

It implements similar syntax to SWITCH statements, and its expression requirements are
similar to the IF statement. The WHEN keyword can also be followed by true="expr" or
 false="expr" .

Only the first eligible WHEN or OTHERWISE statement will be executed. The OTHERWISE
argument can be void.

foreach

<foreach item="iterator" collection="list" open="(" separator="," close=")" reverse="yes">
 @{iterator}
</foreach>

The open, separator, close, and reverse arguments can be omitted.

The item represents the loop variable, and collection represents the argument name of the
loop array.

Datacenter User Guide·Datacenter

> Document Version: 20230209 34

For example, a method receives string array arguments from the outside. The list content is
 @[@"1", @"2", @"3"] . There is another argument, prefix=@"abc" , enclosed by “()”, and

separated by “,”. The execution result will be (abc1,abc2,abc3) .

<update id="proc" arguments="list, prefix">
 <foreach item="iterator" collection="list" open="(" separator="," close=")">
 {prefix}{iterator}
 </foreach>
</update>

Foreach statements are usually used for concatenating the “in” blocks in the SELECT
statement, for example:

select * from ${T} where id in
<foreach item="id" collection="idList" open="(" separator="," close=")">
#{id}
</foreach>

where, set, trim

<where onVoid="quit">
 <if true="state != nil">
 state = #{state}
 </if>
 <if true="title != nil">
 AND title like #{title}
 </if>
 <if true="author != nil and author.name != nil">
 AND author_name like #{author.name}
 </if>
</where>

The WHERE condition will handle superfluous AND and OR (case insensitive) conditions, and it
may not return anything when no condition is met, even the WHERE. It is used to concatenate
WHERE clauses with a large number of conditions in SQL. As shown in the example above, if only
the last judgment is tenable, the statement will correctly return “where author_name like
XXX”, instead of “where AND author_name like XXX”.

<set>
 <if false="username != nil">username=#{username},</if>
 <if false="password != nil">password=#{password},</if>
 <if true="email != nil">email=#{email},</if>
 <if true="bio != nil">bio=#{bio},</if>
</set>

The SET keyword will handle the superfluous “,” signs in the end, and return nothing when no
condition is met. It is similar to the WHERE statement, but only that it handles the suffixal
commas.

Datacenter User Guide·Datacenter

> Document Version: 20230209 35

<trim prefix="WHERE" prefixOverrides="AND | OR | and | or " onVoid="ignoreAfter">
</trim>
<!--
 is equivalent to<where>
-->

<trim prefix="SET" suffixOverrides=",">
</trim>
<!--
 is equivalent to<set>
-->

The WHERE and SET statements can be replaced by TRIM statements. TRIM statements define
the overall prefix of the statement, and the list of superfluous prefixes and suffixes that each
clause will handle (divided by “|”).

The onVoid argument can appear in WHERE, SET and TRIM statements. It has two values:
“ignoreAfter” and “quit”. The values imply the logics used when an empty string is
generated because no clause in the TRIM statement is tenable. ignoreAfter means to ignore
the following formatting statements and return the current SQL statement for execution,
while “quit” means not to execute this SQL statement but to return success.

sql

<sql id="userColumns"> id,username,password </sql>
<select id="selectUsers" result="{}">
 select ${userColumns}
 from some_table
 where id = #{id}
</select>

It defines the reusable SQL code segments and uses ${name} to quote the source code
segments from other statements.

The name in ${name} cannot be ‘T’ or ‘t’, because ${T} and ${t} represents the default table
name. Inside the sql block other sql blocks can be further quoted.

try except

<insert id="insertTemplates" arguments="templates" foreach="templates.model">
 <try>
 insert into ${T} (tplId, tplVersion, time, data, tag) values(%{'#{model.*}', tplId, tplVersion, time, data
, tag})
 <except>
 update ${T} set %{'* = #{model.*}', data, tag} where tplId = #{model.tplId} and tplVersion = #{mod
el.tplVersion}
 </except>
 </try>
</insert>

Datacenter User Guide·Datacenter

> Document Version: 20230209 36

Sometimes the same model may be inserted into the database for multiple times. In this case,
the INSERT or REPLACE statements will lead to the loss of old data when conflicts occur in the
model primary key (another model of the same primary key already exists in the database), and
the data is re-inserted. This will lead to changes in the rowid of the same piece of data. The TRY
EXCEPT statement block can solve the problem, among others. TRY EXCEPT statements can only
be used in definitions of DAO methods and should have no preceding or following statements.
Other statement blocks can be included inside the TRY and EXCEPT statements.

During execution of this DAO method, if execution of the TRY statement fails, the execution will
move to the EXCEPT statement automatically. Only when both of them fail will this DAO call
return the failure result.

Reference methods

@ reference
 @{something} : used for method arguments and the argument name is “something”. To format

SQL statements, all the object contents will be concatenated into SQL statements. As all the
arguments are of the ID type, [NSString stirngWithFormat:@"%@", id] is used by default for
formatting. The @{something or ""} format represents that if the incoming argument is nil, it will
be converted to an empty string instead of NULL.

We do not recommend @{} for referencing arguments as it is not efficient and subject to the
SQL injection risk. If the argument object is of the NSString class, the string will be automatically
enclosed in quotes after concatenation to ensure the correctness of the SQL statement format.
But if the user has added quotes in the configuration file, the underlying layer will not add the
quotes again.

If the @{something no ""} format is adopted, you can enforce not to add quotes.

<select id="getMessage" arguments="id" result="[MessageModel]">
 select * from ${T} where id = @{id}
</select>

In the example above, the incoming id argument is of the NSString class and the codes above are
correct. The generated SQL will format and concatenate the id and enclose it with quotes.

reference
 \#{something} is used for method arguments and the argument name is “something”. To

format SQL statements, the argument will be converted to ‘?’ and the object is bound to SQLite.
This method is recommended for SQL coding as it is efficient. The # {something or ""} format
represents that if the incoming argument is nil, it will be converted to an empty string instead of
NULL.

$ reference
 ${something} is used for referencing contents in the configuration file, such as the default table

name ${T} or ${t} , and constants and SQL statement blocks defined in the configuration file.

Chain access

Datacenter User Guide·Datacenter

> Document Version: 20230209 37

For @ and # references, you can use ‘.’ to list the argument object properties to call. For
example, the incoming argument name is “model” of the MessageModel type. It has a property
of NSString* content . With @{model.content} , you will be able to fetch the value of its content
property. The internal implementation is [NSObject valueForKey:] . So if the argument is a
dictionary (The dictionary’s valueForKey is equivalent to [@""]), you can also use # {adict.aaa}
to reference the adict[@"aaa"] value.

Delegate method
Each proxy object of generated DAO objects supports APDAOProtocol.

@protocol MyDAOOperations <APDAOProtocol>
- (APDAOResult*)insertMessage:(MyMessageModel*)model;
@end

The specific method can be found in function comments in the code.

#import <Foundation/Foundation.h>
#import <sqlite3.h>
#import "APDataCrypt.h"
#import "APDAOResult.h"
#import "APDAOTransaction.h"

@protocol APDAOProtocol;

typedef NS_ENUM (NSUInteger, APDAOProxyEventType)
{
 APDAOProxyEventShouldUpgrade = 0, // Will be upgraded very soon.
 APDAOProxyEventUpgradeFailed, // Table upgrade failed.
 APDAOProxyEventTableCreated, // Table is created.
 APDAOProxyEventTableDeleted, // Table is deleted.
};

typedef void(^ APDAOProxyEventHandler)(id<APDAOProtocol> proxy, APDAOProxyEventType eventTy
pe, NSDictionary* arguments);

/**
 * The method defined by this protocol is supported by all the DAP proxy objects. In usage, id<APDAOP
rotocol> is adopted for converting the DAO object.
 */
@protocol APDAOProtocol <NSObject>

/**
 * Table names can be set in the configuration file `module`. If you want to use the configuration file a
s a template for operations on different tables, you can manually design the table names after the DA
O object is generated.
 * For example, you want to use different tables for conversation messages with different IDs.
 */
@property (atomic, strong) NSString* tableName;

/**
 * Return the path of the database file where the operated table by the proxy is located.
 */
@property (atomic, strong, readonly) NSString* databasePath;

Datacenter User Guide·Datacenter

> Document Version: 20230209 38

@property (atomic, strong, readonly) NSString* databasePath;

/**
 * Acquire the handle of the database file operated table by the proxy.
 */
@property (atomic, assign, readonly) sqlite3* sqliteHandle;

/**
 * Register the global variable arguments. All the methods in configuration files of the arguments can
be used. #{name} and @{name} can be used for accesses in the configuration file.
 */
@property (atomic, strong) NSDictionary* globalArguments;

/**
 * The event callback of this proxy is set by the business. The callback thread is uncertain.
 Pay attention to the circular reference. The business object holds the proxy. Do not access the busi
ness object of proxy in this handler method and the proxy can be acquired in the first argument of the
callback.
 */
@property (atomic, copy) APDAOProxyEventHandler proxyEventHandler;

/**
 * Set an encryptor for encrypting the data in columns marked for encryption in the table. During data
writing to the table, data in this column will be encrypted.
 *
 * @param crypt The encryption struct which will be copied. If the incoming crypt is created externally, i
t needs to be freed externally. If it is APDefaultEncrypt(), no free is required.
 */
@property (atomic, assign) APDataCrypt* encryptMethod;

/**
 * Set a decryptor for decrypting the data in columns marked for encryption in the table. During data re
ading from the table, data in this column will be decrypted.
 *
 * @param crypt The decryption struct which will be copied. If the incoming crypt is created externally, i
t needs to be freed externally. If it is APDefaultDecrypt(), no free is required.
 */
@property (atomic, assign) APDataCrypt* decryptMethod;

/**
 * Return the rowId of the last row of SQLite.
 *
 * @return sqlite3_last_insert_rowid()
 */
- (long long)lastInsertRowId;

/**
 * Obtain the list of all the methods defined in the configuration file.
 */
- (NSArray*)allMethodsList;

/**
 * Delete the table defined in the configuration file. It can be used for data recovery under special circ
umstances. After the table is deleted, the DAO object can still work normally. When other methods are
called, new tables will be created.

Datacenter User Guide·Datacenter

> Document Version: 20230209 39

 */
- (APDAOResult*)deleteTable;

/**
 * Delete all the tables conforming to a regular expression rule. Make sure you delete tables operated
by this proxy only, otherwise exceptions may occur.
 *
 * @param pattern Regular expression
 * @param autovacuum After the deletion is complete, whether to call “vacuum” to clear the databa
se space.
 * @param progress Progress callback. Nil value is allowed. The callback is not guaranteed to be in th
e main thread. It is a percentage value.
 *
 * @return Whether the operation is successful.
 */
- (APDAOResult*)deleteTablesWithRegex:(NSString*)pattern autovacuum:(BOOL)autovacuum progres
s:(void(^)(float progress))progress;

/**
 * Call the database link of your own to excecute the “vacuum” operation.
 */
- (void)vacuumDatabase;

/**
 * DAO objects can put their operations in transactions to speed up the operation. So in fact, you call t
he daoTransaction method of the database file APSharedPreferences that this DAO object operates o
n.
 */
- (APDAOResult*)daoTransaction:(APDAOTransaction)transaction;

/**
 * Create a parallel connection for the database, for the purpose of speeding up the possible concurre
nt SELECT operations that may follow. This method can be called for multiple times to create several st
and-by connections for the database.
 * The connections created will be automatically closed and the business layer does not to handle the
m.

 * @param autoclose Automatically close the connections if they are idle for a certain number of secon
ds. The value "0" indicates that the system value will be used.
 */
- (void)prepareParallelConnection:(NSTimeInterval)autoclose;

@end

Based on LRU elimination rule, LRU storage provides the following two storage methods:

Memory cache (APLRUMemoryCache): Provide the memory cache based on LRU elimination
algorithm. What cached are ID objects. APLRUMemoryCache is thread-safe. In addition, LRU
algorithm is implemented based on linked list with high efficiency.

1.4.3.4. LRU storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 40

Disk cache (APLRUDiskCache): Provide the LRU elimination algorithm-based cache that is
persisted to databases. What cached are the objects supporting NSCoding. It is easier to
maintain databases than files, and using databases makes the disk cleaner.

Memory cache
@property (nonatomic, assign) BOOL handleMemoryWarning; // default NO

Set whether to handle the system memory warning, NO by default. If it is YES, when a memory warni
ng appears, the system will clear the cache.

(id)initWithCapacity:(NSInteger)capacity;

Initialize and specify the capacity

(void)setObject:(id)object forKey:(NSString*)key;

Store the object into cache. If the object is nil, it will be deleted.

(void)setObject:(id)object forKey:(NSString*)key expire:(NSTimeInterval)expire;

Store the object into cache, and specify a expiration timestamp

(id)objectForKey:(NSString*)key;

Get objects

(void)removeObjectForKey:(NSString*)key;

Delete objects

(void)removeAllObjects;

Delete all objects

(void)addObjects:(NSDictionary*)objects;

Add data in batch. It is unable to set the expiration time of every object. By default, all objects will n
ever expire.

(void)removeObjectsWithRegex:(NSString*)regex;

Delete data in batch. The key of data matches with the regular expression.

(void)removeObjectsWithPrefix:(NSString*)prefix;

Delete the data that have a specific prefix in batch.

(void)removeObjectsWithSuffix:(NSString*)suffix;

Delete the data that have a specific suffix in batch.

(void)removeObjectsWithKeys:(NSSet*)keys;

Delete all the data that correspond to the keys in batch.

Datacenter User Guide·Datacenter

> Document Version: 20230209 41

(NSArray*)peekObjects:(NSInteger)count fromHead:(BOOL)fromHead;

Read the cached objects into an array, but not apply the LRU cache strategy on them. When fromHe
ad is YES, the system traverses from start to end; otherwise, the end-to-start traversal is performe
d.

(BOOL)objectExistsForKey:(NSString*)key;

Fast determine if the object of a key exists or not, without any influence on LRU.

(void)resetCapacity:(NSInteger)capacity;

Reset capacity. If the new capacity is smaller than the original capacity, partial cache will be deleted
.

Disk cache
(id)initWithName:(NSString*)name capacity:(NSInteger)capacity userDependent:
(BOOL)userDependent crypted:(BOOL)crypted;

Create a persistent LRU cache, and the stored objects must support NsSCoding protocol.
* @param name Cache name, which is used as the table name in the database
* @param capacity Capacity (the actual capacity is larger than it), which is used to solve the perf
ormance problem on adding data when the cache is full
* @param userDependent Whether it is related to the user; if yes, when the APDataCenter.currentU
serId is null, the cache doesn't work;
 After user switching, the cache automatically points to the current user’s table, the business do
esn’t necessarily care this event.
* @param crypted Whether the data are encrypted
* @return Cache instance, required for the business

(void)setObject:(id)object forKey:(NSString*)key;

Cache an object, and the expire defaults to 0, namely the object will never expire

(void)setObject:(id)object forKey:(NSString*)key expire:(NSTimeInterval)expire;

Cache an object, and specify a expiration timestamp
* @param object Object, if it is nil, the object of the specified key will be deleted
* @param key key
* @param expire Expiration timestamp, specify an absolute timestamp relative to 1970 You can u
se [date timeIntervalSince1970].

(id)objectForKey:(NSString*)key;

Get objects. If the specified expiration timestamp has been up when the objects are got, the system
will return nil and delete the objects. If there are other setObject operations that haven’t been com
pleted before objectForKey is called, the system will keep waiting.

(void)removeObjectForKey:(NSString*)key;

Delete objects

(void)removeAllObjects;

Datacenter User Guide·Datacenter

> Document Version: 20230209 42

Delete all objects

(void)addObjects:(NSDictionary*)objects;

Add data in batch

(void)removeObjectsWithSqlLike:(NSString*)like;

Delete data in batch. The key of data uses SQLite LIKE statement to match

(void)removeObjectsWithKeys:(NSSet*)keys;

Delete all the data that correspond to the keys in batch.

The default storage space of APDataCenter is the /Documents/Preferences directory of the
application sandbox. If the business is independent or the data amount is large, you can
customize the storage space.

You can create your own storage directory by using APCustomStorage. You can use all services
provided by Datacenter in this directory, which is similar to the APDataCenter. For example, you
can run the following code to create the Documents/Contact directory.

APCustomStorage* storage = [APCustomStorage storageInDocumentsWithName:@"Contact"];

The directory contains both commonPreferences which stores public data and userPreferences
which stores user-related data. APCustomStorage is similar to APDataCenter, so you don’t have
to pay attention to user switching.

API description
(instancetype)storageInDocumentsWithName:(NSString*)name;

Create a custom storage with path as /Documents/name.

(id)initWithPath:(NSString*)path;

This method is usually not used for creating a custom storage at any specified path. The
storageInDocumentsWithName can be used instead. The APCustomStorage created with this
interface should be held by the yourself. When multiple APCustomStorages share the same
path, errors will occur.

(APBusinessPreferences*)commonPreferences;

For the global storage objects irrevelant to users, access data by using the key-value method.
Different from APDataCenter, for APCustomStorage, the business argument is not required for
storing key-value data in the custom storage space of the business. Only the key is required.

(APBusinessPreferences*)userPreferences;

For the global storage objects of login users, access data by using the key-value method.
When the user is not logged-in, nil will be returned. Different from APDataCenter, for
APCustomStorage, the business argument is not required for storing key-value data in the
custom storage space of the business. Only the key is required.

1.4.3.5. Custom storage

Datacenter User Guide·Datacenter

> Document Version: 20230209 43

(id)daoWithPath:(NSString*)filePath userDependent:(BOOL)userDependent;

For more information, see description of the APDataCenter class.

Automatically cleaned cache directory
Create an automatically cleaned cache directory. Specify the cleaning logic by using
APPurgeableType and specify the size of the cache directory by using size. Each time the app
starts, it checks the directory status in the background process and deletes files as needed. If
you set an upper limit for the directory’s capacity, when the directory reaches the upper limit,
the app deletes the earliest files to restore the capacity of the cache directory to 1/2 of the
upper limit.

1.4.3.6. Data cleanup

Datacenter User Guide·Datacenter

> Document Version: 20230209 44

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, APPurgeableType)
{
 APPurgeableTypeManual = 0, // Clear the data when user manually clear the cache.
 APPurgeableTypeThreeDays = 3, // Automatically delete the data that was generated three day
s ago.
 APPurgeableTypeOneWeek = 7, // Automatically delete the data that was generated one week
ago.
 APPurgeableTypeTwoWeeks = 14, // Automatically delete the data that was generated two wee
ks ago.
 APPurgeableTypeOneMonth = 30, // Automatically delete the data that was generated one mon
th ago.
};

ifdef __cplusplus
extern "C" {
#endif // __cplusplus

 /**
 * Return a cleanable storage path based on the user's input, and automatically determine whether t
he directory exists. If not, create one.
 *
 * @param userPath: The user-specified path. For example, the path is previously concatenated by u
sing "Documents/SomePath" and is now obtained conveniently by using APPurgeableStoragePath(@"D
ocuments/SomePath").
 * @param type: Specify a cleaning type, which can be manual, every week, or every three days.
 * @param size: Specify a maximum data size in MB. Earlier data is cleared when the maximum size is
reached. 0 indicates that there is no upper limit.
 *
 * @return Target path
 */
 NSString* APPurgeablePath(NSString* path);
 NSString* APPurgeablePathType(NSString* path, APPurgeableType type);
 NSString* APPurgeablePathTypeSize(NSString* path, APPurgeableType type, NSUInteger size /* MB
*/);

 /**
 * Clear and reset all registered directories.
 */
 void ResetAllPurgeablePaths();

ifdef __cplusplus
}
#endif // __cplusplus

Cache cleaning API
Data Center provides a cache cleaning implementation class, which reads cleaning tasks from
PurgeableCache.plist. This file must be delivered in the Main Bundle of the app. The cleaner is
executed asynchronously. The callback function is always called in the main thread and can be
used to display and handle UIs.

Datacenter User Guide·Datacenter

> Document Version: 20230209 45

#import <Foundation/Foundation.h>

typedef NS_ENUM(NSUInteger, APCacheCleanPhase)
{
 APCacheCleanPhasePreCalculating = 0, // Scan the sandbox size before cleaning.
 APCacheCleanPhaseCleaning, // Cleaning
 APCacheCleanPhasePostCalculating, // Scan the sandbox size after cleaning is completed.
 APCacheCleanPhaseDone, // Cleaned
};

@interface APUserCacheCleaner : NSObject

/**
 * Perform cleaning asynchronously. A callback method must be transferred.
 * progress indicates the real progress when phase returns APCacheCleanPhasePreCalculating, APCac
heCleanPhaseCleaning, or APCacheCleanPhasePostCalculating. The maximum value is 1.0.
 * progress returns the amount of cleaned data in MB when phase is APCacheCleanPhaseDone.
 *
 * @param callback: Callback method.
 */
+ (void)execute:(void(^)(APCacheCleanPhase phase, float progress))callback;

@end

Two types of cleaning tasks can be defined in PurgeableCache.plist.

Path: The file or directory path, which can be the relative path in the sandbox.

Entries: Specify the files or subdirectories to be deleted under Path when it is a directory, which
supports the wildcard * match.

Class: Specify the definition class of a callback method.

Selectors: Specify the Class methods that call the Class. Note that the methods must be class
methods instead of instance methods.

1.5. FAQ

Datacenter User Guide·Datacenter

> Document Version: 20230209 46

iOS FAQ

How to set Datacenter to user mode?
Solution: The applications that access mPaaS use their own account system. If you want to use
Datacenter to manage the user-mode data, you need to inform Datacenter the first time, so
Datacenter can switch the user database, and then inform other business layers.

[[APDataCenter defaultDataCenter] setCurrentUserId:userId];

When you log out, you don’t have to call setCurrentUserId method, and Datacenter continues
to open the previous user’s database, without any impact.

How to set the default encryption key?
Solution: Datacenter provides default encryption method, and the key is automatically
generated by using the appKey that is passed in with mPaasInit method. It is suggested that
the applications accessing mPaaS use their own keys.

Implement the following methods of mPaasAppInterface interface, and pass the key to
Datacenter in the form of NSData.

#pragma mark Datacenter

/**
 * To implement this method, you must return the encryption key (32 bytes) that is used by Datacenter
by default. You can let this key be managed by the application with Security Guard, or encrypt and obf
uscate the key, and then write it in the client.
 * It is feasible to not to implement the method. Datacenter uses mPaaS and appKey to calculate a res
ult, and uses the result as the encryption key with adequate security.
 *
 * @return 32-byte key, which is placed in NSData
 */
- (NSData*)appDataCenterDefaultCryptKey;

It is suggested that each application generates its own 32-byte key, converts the key to Base64
string, and saves it in Security Guard. In this method, the string is extracted through the static
interface of Security Guard, and reversely parsed to NSData.

Is Datacenter thread-safe?
Solution: Yes, all the data storage interfaces of Datacenter ar thread-safe. You can call them in
any threads.

1.5. FAQ

Datacenter User Guide·Datacenter

> Document Version: 20230209 47

	1.Datacenter
	1.1. About Datacenter
	1.2. Integrate Android SDK
	1.2.1. Quick start
	1.2.2. Advanced guide

	1.3. Integrate iOS SDK
	1.4. Storage type
	1.4.1. Storage types
	1.4.2. Android storage types
	1.4.2.1. Database storage
	1.4.2.2. Key-value pair storage
	1.4.2.3. File storage

	1.4.3. iOS storage types
	1.4.3.1. APDataCenter
	1.4.3.2. KV storage
	1.4.3.3. DAO storage
	1.4.3.4. LRU storage
	1.4.3.5. Custom storage
	1.4.3.6. Data cleanup

	1.5. FAQ

